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Abstract. We calculate the quasiparticle contribution to the zero-temperature Hall conductance
of two-dimensional extreme type-II superconductors in a high magnetic field, using the Landau
basis. As one enters the superconducting phase the Hall conductance is renormalized to smaller
values, with respect to the normal-state result, until a quantum level-crossing transition is reached.
At high values of the order parameter, where the quasiparticles are bound to the vortex cores, the
Hall conductance is expected to tend to zero due to a theorem of Thouless.

1. Introduction

Numerous superconductors like high-Tc cuprates, A15 structure compounds, boro-carbides
and many organics reveal the importance of Landau quantization at high magnetic fields and
low temperatures, as evident, for instance, from the recent observation of the de Haas–van
Alphen oscillations in the superconducting phase [1]. In these systems the cyclotron splitting
(ωc) between the Landau levels (LL) is the largest energy scale; in particular,ωc > 1 (where
1 is the superconductor order parameter). The effect of the Landau quantization has attracted
theoretical attention and reveals itself in the appearance of gapless superconductivity [2, 3]
and power-law dependence of the low-T thermodynamic properties. A good description
of the de Haas–van Alphen oscillations has been obtained taking into account the Landau
quantization [4]. The gapless nature of the spectrum also leads to an enhanced acoustic
attenuation in contrast to the case for usual gapped superconductors [5] and it survives even in
the presence of disorder [6].

Close to the upper critical field, and at small values of1, a diagonal approximation (DA),
where the coupling between the LL is neglected, is appropriate [3, 5]. In this regime the
quasiparticles propagate coherently throughout the vortex lattice. Associated with the zeros
of the order parameter in real space are gapless points in the magnetic Brillouin zone. As1

grows, the coupling between the LL has to be taken into account. A perturbation scheme in
the off-diagonal couplings can then be followed, as long as there are no level-crossings [7],
and it can be shown analytically to all orders in the perturbation theory that there is always a
discrete set of gapless points. In general, a numerical solution of the Bogoliubov–de Gennes
(BdG) equations has to be carried out. For large values of1 a regime is reached where the
quasiparticles are bound to the vortex cores with an energy spacing typical of an isolated
single vortex [8]. In this regime one expects that a tight-binding approximation should yield
good results, since in this low-field regime the vortex cores are sparse. Such a procedure has
been carried out and a gapped regime is indeed found [8, 9] signalling a transition from the
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high-field gapless regime to the low-field gapped regime. Between the small-1 regime and
this gapped regime several quantum level-crossings take place. This is a difficult numerical
problem because the number of Landau levels increases considerably as the field lowers and
it is not easy to determine the value of1 for which the transition to the gapped regime takes
place.

On the other hand, Thouless has shown that the Landau levels do not constitute a complete
basis to be used in a tight-binding approximation scheme and therefore it is not possible to
construct well localized representations of the magnetic translation group unless the Hall
conductance,σxy , is zero [10]. Thouless showed that if Wannier functions are constructed,
they decay with distance at most as|r −Ri |−2 (if the Hall conductance is nonvanishing), but
he also showed that well localized Wannier functions (decaying faster than any power) can
be constructed ifσxy vanishes. Using the Balian–Low theorem it has also been shown that
in general [11] the Landau levels cannot be chosen sufficiently localized to make the1x and
1y uncertainties finite. This is equivalent to the statement by Thouless on the slow decay rate
of the Wannier functions with distance. The notable exception is a sub-band with zero Hall
conductance. Since it is intuitive that in the limit in which the vortex concentration is low a
tight-binding description should be appropriate, we expect, in the light of Thouless’s theorem,
that σxy should be zero in this low-field regime. This is suggested by the localized nature
evident from the numerical solution of the BdG equations. To determine whether the Wannier
states are indeed a good basis is a delicate and difficult matter and in general a tight-binding
description will have one conducting state at the band centre [12]. We expect however that
in this low-field regime the functions will be well localized and we argue therefore that the
Hall conductance could be used as an order parameter to signal the transition from the high-
field gapless regime, where Landau quantization has been shown to occur (finiteσxy), to the
low-field gapped regime (zeroσxy).

The calculation of the Hall conductance in the superconducting phase is also interesting
in itself. Several authors have given attention to the Hall conductance of the vortex lattice.
In general, there are two contributions: one is due to the vortex motion and the other to the
quasiparticle contribution (usually associated with modes localized in the normal region inside
the vortex cores). One of the reasons for this interest is that in the superconducting phaseσxy
has a different sign with respect to the one of the normal phase [13]. This has been shown to
be due to the vortex motion part since the localized modes are predicted to give a contribution
with the same sign as the normal-phase value.

In this paper we focus solely on the quasiparticle contribution which is the only remaining
contribution if the vortex lattice is pinned to some imperfection (in this case the vortex motion
is frozen). We do not address here the sign change, but study the influence of the coherent
propagation of the quasiparticles. Also, we take into consideration the Landau quantization in
a regime where a quasiclassical approximation is not valid [14].

2. Calculation of the Hall conductance

We calculate the Hall conductance using the Kubo formula

σxy(r, r
′) = −ih̄L2

∑
β 6=0

{〈0|Jx(r)|β〉〈β|Jy(r′)|0〉 − 〈0|Jy(r′)|β〉〈β|Jx(r)|0〉} 1

(εβ − ε0)2

(1)
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where the currents are given by

Ji(r) = eh̄

2imc

∑
σ

{
ψ†
σ (r)

(
∂

∂xi
ψσ (r)

)
−
(
∂

∂xi
ψ†
σ (r)

)
ψσ (r)

}
− e2

mc2
Ai
∑
σ

ψ†
σ (r)ψσ (r).

(2)

Hereσ is the spin projection,i = x, y, z,A is the vector potential,ψσ (r) is the electron field
operator, the energiesεβ are the full solution of the many-body problem andβ = 0 is the
ground state. We consider a square lattice of sideL.

We calculate the Hall conductance, obtaining the energies from the solution of the BdG
equations [2,3]. The field operators are written as

ψ↑(r) =
∑
ν,q

(uνq(r)γν,q,↑ − v∗νq (r)γ †
ν,q,↓)

ψ↓(r) =
∑
ν,q

(uνq(r)γν,q,↓ + v∗νq (r)γ
†
ν,q,↑)

(3)

and

εβ =
∑
σ,ν,q

ενqγ
†
ν,q,σ γν,q,σ . (4)

Hereγ †
ν,q,σ creates a quasiparticle in the levelν, with momentumq and spinσ . The problem is

diagonal inq (vectors of the magnetic Brillouin zone) due to the periodicity of the Abrikosov
vortex lattice. The amplitudesu andv are expanded in the Landau basis (n is the Landau level)
as

uνq(r) =
∑
n

uνqnφqn(r) (5)

and

v∗νq (r) =
∑
n

v∗νqnφ−qn(r). (6)

Hereφqn(r) are the eigenfunctions of the magnetic translation group in the Landau gauge
(Ax = −Hy,Ay = 0, Az = 0) belonging to thenth Landau level. The amplitudesuνqn andvνqn
are the solutions of the BdG equations andενq are the energy eigenvalues. The BdG equations
to be solved are

εnu
ν
qn +

∑
m

1nm(q)v
ν
qm = ενquνqn

−εnvνqn +
∑
m

1∗nm(q)u
ν
qm = ενqvνqn

(7)

whereεn = (n + 1/2)−µ/h̄ωc (µ is the chemical potential),1nm(q) is the matrix element of
the order parameter1(r) connecting electronic states (q, n) and (−q, m) [4]. In general, the
order parameter is expanded in the LL for a charge 2e, which leads to a complicated structure
for the BdG equations which have to be solved self-consistently, since the order parameter
satisfies1(r) = V 〈ψ↑(r)ψ↓(r)〉, whereV is the electron–electron interaction. In the DA
these equations are easily solved:

ενq = ±
√
ε2
n + |1nn(q)|2 ≡ εnq

uqn = 1√
2

(
1 +

εn

ενq

)1/2

vqn = 1√
2

(
1− εn

ενq

)1/2

(8)
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(and, therefore,ν ≡ n). In this case

uνqnv
∗ν
−qn =

1nn(q)

2εnq
. (9)

As1 grows, the off-diagonal terms become increasingly important. Recently, the leading
corrections to the normal and pairing self-energies have been found by delaying the Nambu
rotation to the last step and it was obtained [7] that the renormalized quasiparticle energies can
be written as in the DA like

ενnq = ±
√
ε̄n(q) + |1̄nn(q)|2 (10)

but with renormalized normal and pairing terms which to leading order are given by

ε̄n(q) = εn +
∑
p 6=0

|1n,n+p(q)|2
p

1̄nn(q) = 1nn(q)−
∑

p 6=0,p′ 6=0

1n,n+p(q)1
∗
n+p,n+p′(−q)1n+p′,n(q)

pp′
.

(11)

The effect of the off-diagonal couplings is taken into account by renormalizing the diagonal
(in the Landau index) terms keeping a diagonal problem to be Nambu rotated (ν is still ν ≡ n).

In figure 1(a) we show the energy of the lowest band above the Fermi level, obtained from
equation (8), as a function ofq (we only show one quadrant of the magnetic Brillouin zone
due to the square lattice symmetry) for1 = 0.1 andnc = 10 (we fixµ at this LL energy).
In figures 1(b) and 1(c) we show the same band taking into account the off-diagonal terms in
equation (7) considering1 = 0.1 and1 = 0.5, respectively. Results similar to these were
previously presented in other forms (see e.g. [3,8]) but we present them here as well to stress
the role of the off-diagonal terms. The energy of the lowest band above the Fermi level is given
by the gap function|1nn(q)| in the DA. This is given by [3]

1nn(q) = 1√
2

(−1)n

22nn!

∑
k

e2ikqya−(qx+πk/a)2l2H2n

[√
2

(
qx + π

k

a

)
l

]
(12)

wherea is the lattice constant of the square vortex lattice andl is the magnetic length:

l =
√
h̄c

eH
= a√

π
.

The gap|1nn(q)| has zeros in the magnetic Brillouin zone at momentum points (qj ) which
are in direct correspondence with the positions of the vortices in real space (zi) such that
qj l = zi/ l [3]. These gapless points are due to the centre-of-mass motion of the Cooper
pairs in the presence of a high magnetic field and not due to the internal structure of the gap
function as in d-wave superconductors. The gapless points grow considerably in number as
nc grows [3]. However, they preserve in the magnetic cell the vorticity per unit cell of the
order parameter in real space. Away from the gapless points the gap expands to a scale of the
order of1 giving rise to a complicated structure that oscillates ever more strongly asn grows.
Increasing1 only rescales the energy. The energy has a linear dispersion around most of the
zeros (−1 vorticity). Other sets of zeros have a quadratic dispersion for the square (triangular)
lattice corresponding to a−2 (−3) vorticity, respectively. This dispersion leads to power-law
behaviour at low temperatures, as mentioned above. On including off-diagonal terms, small
gaps open in the spectrum [7] which are due to the normal (pairing) part of the self-energy and
which are of order12 (13). However, throughout the Brillouin zone the numerical prefactors
are very small and the spectrum is similar almost everywhere to the one obtained in the DA.
The notable exceptions are the Eilenberger points (EP) (e.g.q = (−0.5, 0.5)) where the gap
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(a)

Figure 1. The lowest energy band as a function ofq for (a)1 = 0.1 in the DA and including
off-diagonal terms for (b)1 = 0.1 and (c)1 = 0.5, respectively. Only one quadrant of the
Brillouin zone is shown.

increases significantly as1 grows [7]. The off-diagonal matrix elements1nm(q) have in
general a different structure of zeros. Ifn + m is even, the Eilenberger points remain, but
otherwise they are absent.

These results are best summarized by considering the density of states (DOS). In figure 2
we plot the DOS as a function of energy for different values of1. For small1 the DOS is
broadened from the Landau level locations by an amount of the order of1. The DOS is high
at low energies. As1 grows the energy interval grows and eventually at1 of the order of
the cyclotron energy the lowest band and the next band approach each other and a quantum
level-crossing transition occurs. Note that as1 grows and the DOS spreads over to higher
energies, there remains a high DOS at low energies due to the low gap states that retain the
characteristic spectrum of the DA. Therefore, it is expected that the DA will be appropriate at
low 1 [3,5] (see however reference [8] for a thorough discussion).

To calculate the Hall conductance we insert equations (2), (3) in the expression forσxy ,
equation (1), and obtain for the average Hall conductance

σ = 1

L4

∫
dx
∫

dx ′
∫

dy
∫

dy ′ σxy(x, y; x ′, y ′) (13)
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(b)

Figure 1. (Continued)

and, after several straightforward but lengthy steps (q = 2e),

σ

q2/h
= −

∑
β 6=0

1

(εβ − ε0)2

∑
ν,ν ′

1

Nφ

∑
nm

[nνq↑nν ′q↓ + nνq↓nν ′q↑]′

× <
{[
vν−qnu

∗ν
qm

(
uν
′
qn+1

√
n + 1

2
+ uν

′
q,n−1

√
n

2

)
×
(
v∗ν

′
−qm+1

√
m + 1

2
− v∗ν ′−q,m−1

√
m

2

)]
+

[
vν−qnu

∗ν ′
qm

(
uν
′
qn+1

√
n + 1

2
+ uν

′
q,n−1

√
n

2

)
×
(
v∗ν−qm+1

√
m + 1

2
− v∗ν−q,m−1

√
m

2

)]}
. (14)

The sum is extended over the excited states. Since the current operator is a two-particle oper-
ator, the excited states only differ from the ground state by the occupation of two quasiparticle
(fermionic) states (this is the reason for the prime in the number occupation term). HereNφ
is the number of momenta appearing in the sum, which equals the number of vortices in the
system. The energies have been rescaled by ¯hωc.
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(c)

Figure 1. (Continued)

A selection rule in the DA implies thatν 6= ν ′. We can therefore sum over the spin
variables. The expression forσ then takes the form

σ

q2/h
= −1

4

∑
β 6=0

1

(εβ − ε0)2

1

Nφ

×
∑
q

∑
n

<
{
(nnqnn+1,q)

′(n + 1)

[
1∗nn
εnq

1n+1,n+1

εn+1
q

− ε
n
q − εn
εnq

εn+1
q + εn+1

εn+1
q

]

− (nnqnn−1,q)
′(n)

[
1∗nn
εnq

1n−1,n−1

εn−1
q

− ε
n
q − εn
εnq

εn−1
q + εn−1

εn−1
q

]}
. (15)

Hereεβ = εnq + εn+1
q in the first term andεβ = εnq + εn−1

q in the second term. Fixing the
chemical potential at the levelnc (nc + 1 occupied levels) and taking1 = 0 (normal phase) we
get thatσ̄ = σh/q2 = nc + 1, as expected. The only contribution comes from the first term
with n = nc. Taking now a small value of1, the two dominant contributions come from the
previous term and from the first term withn = nc − 1. This leads to a discontinuity inσ : at
1 = 0 the Hall conductancēσ = (nc + 1), while at small, but nonzero1, σ̄ ∼ (nc + 1)− 1/2.
As1 grows,σ̄ decreases continuously.

In figure 3 we show̄σ as a function of1 for the DA and for the leading-order perturbation
theory (PT) for the range of values of1 up to the order of the first level-crossing. We consider
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Figure 2. The density of states (DOS) in arbitrary units as a function of energy fornc = 10. The
first two bands are shown.

the casesnc = 4, 10. As1 grows, the off-diagonal terms renormalize the Hall conductance
downwards with respect to the DA value. In the normal phase (1 = 0), the Fermi level (for a
completely filled level) is in the gap between two Landau levels. As1 is turned on,µ is kept
fixed atµ = nc + 1/2 + η (η → 0) and the levels spread to higher energies, which leads to
a decrease of the Hall conductance since the fraction of low-energy states that may conduct
decreases. The presence of the off-diagonal terms increases the rate of decrease for larger
values of1, for the same reason. At very low1 the two methods agree, as expected. Close
to the level-crossing the study is very difficult because a fully self-consistent calculation is
needed to properly cover the crossover to the gapped regime. Going beyond the DA, several
eigenfunctions of the BdG equations have components in the various Landau indices, which due
to the gapless (or almost gapless) nature of the spectrum causes difficult numerical problems
due to the energy denominator in equation (13). Also, strong mixing of the LL destroys the
LL structure beyond the level-crossing transition(s). There is a discontinuity in the Fermi level
due to this level-crossing (by±2ωc because of the doubling due to the particle and hole bands,
u andv, respectively). After the transition,σ̄ is expected to decrease again and to tend to zero
as1 grows even further (eventually after several level-crossings).
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0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3. The Hall conductance fornc = 4, 10 as a function of1 for the two methods considered:
the diagonal approximation (DA) and leading-order perturbation theory (PT). The two points at
nc + 1 are the1 = 0 result (normal phase).

3. Conclusions

In summary, we have calculated the Hall conductance of a pinned vortex lattice in a high
magnetic field using the Kubo formula and the solution of the Bogoliubov–de Gennes equations
for the wave-function amplitudes expanded in the Landau basis. We compared the diagonal
approximation with the leading-order perturbation theory recently introduced [7]. The Hall
conductance decreases from the normal-state value due to the presence of the low-lying states
immediately above the Fermi energy. As1 grows, the spread in energy increases andσ

decreases. We limited the study to the region of validity of the PT. We suggest thatσ may be
used as an order parameter to detect the transition from the gapless regime (finiteσ ) to the
gapped region (zeroσ ) where a tight-binding description should be appropriate.
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